

L1Muo Status and Plans

Ken Johns
University of Arizona
for the
L1 Muon Group

L1MU In a Nutshell

- All L1MU and nearly all MCEN hardware installed
- No L1MU readout problems at high rates (500 Hz)
- L1MU and MCEN Algorithms
 - Increased CF scintillator-only efficiency by ~25%
 - Implemented several low P_T dimuon triggers
 - Studying loose and tight PDT and MDT triggers with data
 - Measured rates for the above
- Current L1MU Strategy
 - Optimize scintillator-only and wireonly triggers with data
 - ◆ De-emphasize L1CFT.L1MUO until the fall
 Some D0 Meeting
 July 2002

MCEN Status

- Hardware
 - All MCON's installed (since 10/01)
 - 42/48 MCEN's installed
- Hardware Problems
 - SRQ timeout errors in N B/C crate
 - Event building integrity
 - ▲ Crate loading problem?
 - ▲ Slow progress due to few accesses
- MDT Centroid Algorithms
 - Installed and used to form loose
 (A) and tight (AB) MDT triggers
 - Monitored in data with tsim

MCEN Plans

Priorities

- Understand and fix readout problems
- Repair and certify remaining MCEN's
 - ▲ same engineer for both
- Re-do MDT centroid equations with correct muon geometry
- Move monitoring to online
- "Everything else"

L1MU Status

- Hardware
 - Complete
- Hardware problems
 - No serious ones however we are still checking readout integrity
 - TF is *still* not at spec L1 decision latency
- L1MU algorithms
 - Final FPGA framework logic installed
 - ▲ Makes future changes to algorithms very simple
 - Loose and tight scintillator-only and wire-only algorithms in place
 - Optimizing these using data

L1MU High Pt Algorithms

- Single muon, loose and tight, scintillator-only (05) and/or wire-only (10) triggers in place
- Increased CF05 trigger efficiency by ~25%
 - Bottom octant improvements not yet downloaded
- Increase in EF05 trigger efficiency via AB or BC triggers aborted due to high rates
 - Data analysis in progress
- CF10 and EF10 triggers are in place and being "tagged" in the trigger
 - Data analysis in progress

L1MU Low Pt Algorithms

- Dimuon, loose and tight, scintillator-only (05) triggers in place
 - Also 2 loose muons plus 1 tight muon
- Dimuon, loose and tight, wireonly (10) triggers not optimized
 - Will eventually use centroidconfirmed scintillator hits
 - Studies for "count-to-two" with wire centroids in progress
- Manpower request to B group
 - Data and MC "count-to-two" trigger studies
 - Not for beginners

Available L1MU Triggers

- L1MU trigger terms
 - Loose == A
 - ◆ Tight == AC (CF), AB (EF)
- Implemented L1MU terms
 - MUO(count,PTX,eta,L,X,X)
 - MUO(count,PTX,eta,X,L,X)
 - MUO(count,PTX,eta,L,L,X)
 - MUO(count,PTX,eta,T,X,X)
 - MUO(count,PTX,eta,X,T,X)
 - MUO(count,PTX,eta,T,T,X)
 - MUO(2,PTX,eta,T,X,L)
- Additional terms can be implemented
 - Need feedback from physics groups
- L1MU.L1CFT terms deferred until fall

L1CFT Issue

- L1 Trigger Latency Problem
 - L1MU.L1CFT decision is ~250 ns longer than the ECB spec
 - We are not even at the ECB spec
- Solution 1
 - ◆ CFT clock goes from 132 to 264 ns
 - TF moves 2 big (132 ns) clock ticks back
 - TF does internal (60 ns) adjustment
 - All systems increase pipeline depth by 2 clock ticks
 - L1MU finds 132 ns in 05 logic

L1CFT Issue

- L1 Trigger Latency Problem
 - L1MU.L1CFT decision is ~250 ns longer than the ECB spec
 - We are not even at the ECB spec
- Solution 2
 - ◆ CFT clock goes from 132 to 264 ns
 - TF moves 3 big (132 ns) clock ticks back
 - TF does internal (60 ns) adjustment
 - TF sends L1 decision early on twist-n-flat to select PDT MFC cards
 - All systems increase pipeline depth by 3 clock ticks

L1MU Simulator

- Little change in last two months
- Previously showed <1% disagreement between hardware and simulator L1MU decisions using data
- In progress
 - RCP based algorithms
 - Updated RCP files to match FPGA algorithms (including dimuon)
 - L1MU to L2MU bug
 - L3 message re-ordering
 - online monitoring
 - updated documentation

mu1 Rates (preliminary)

TERM	RATE AT 2.5E20 (HZ)
MU1PTXCLXX	27600
MU1PTXCLLX	34200
MU1PTXCLLX	1500
MU1PTCTXX	231
MU1PTXCXTX	1928
MU1PTXCTTX	37

mu2 Rates (preliminary)

	Т
TERM	RATE AT 3.3E30
	(HZ)
MU2PTXCLXX	540
MU2PTXCXLX	18900
MU2PTXCLLX	106
MU2PTXCTXL	24
MU2PTXCTXX	0.7
MU2PTXCXTX	391
MU2PTXCTTX	0.2

Some D0 Meeting July 2002

Conclusions

- Hardware commissioning rapidly winding down
- Algorithm commissioning rapidly heating up
- Many opportunities for physics groups to contribute by performing MC and data analysis studies, especially in the low Pt regime

Run II Muon Detector

